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Skeleton2Point: Recognizing Skeleton-Based Actions As Point
Clouds
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ABSTRACT
Skeleton-based action recognition has achieved remarkable results
by developing graph convolutional networks (GCNs) and skeleton
transformers. However, the existing methods pay much more atten-
tion to encoding joints’ position with the given time and serial num-
ber information, neglecting tomodel the positional information con-
tained in the 3D coordinate channel itself. To solve these problems,
this paper proposes a skeleton-to-point network (Skeleton2Point)
to model joints’ position relationships in three-dimensional space,
which is the first to leverage point cloud methods into skeleton-
based action recognition in a dual-learner approach. The human
skeleton learner feeds compact skeletal representations in the skele-
ton transformer network, which is composed of a spatial trans-
former block and a temporal transformer block. In the point cloud
learner, skeleton data is transformed into point cloud’s form with
a proposed Information TransformModule (ITM), which fills the
channel information with the spatial and temporal serial number.
Then, several point cloud learning levels are adopted to extract
deep position features. The point cloud learning level is made of
three key layers: Sampling layer, Grouping layer, and Point cloud
extract layer. We also propose aCluster-Dispatch-based Interaction
module (CDI) to enhance the discrimination of local-global infor-
mation. In comparison with existing methods on NTU-RGB+D 60
and NTU-RGB+D 120 datasets, Skeleton2Point achieves SOTA lev-
els on both joint modality and stream fusion. Especially, on the
challenging NTU-RGB+D 120 dataset under the X-Sub and X-Set
setting, the accuracies reach 90.63% and 91.86%. Please refer to the
supplementary material for our code.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.
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Figure 1: Skeleton data contains 3D joint coordinates and
bone orientations. Both containing 3D coordinates, and joints
could be regarded as point clouds. So we could leverage point
cloud feature extraction method to learn the position infor-
mation of the joint in a new view.

1 INTRODUCTION
Human action recognition is an important task in the field of com-
puter vision, which also has great research value and broad applica-
tion prospects in education[18], human-computer interaction[14],
and content-based video retrieval[16]. Empowering intelligent ma-
chines with the same ability to understand human behaviors is
critical for natural human-computer interaction and many other
practical applications. For human action videos, various modalities
derived from the rich multimedia are beneficial to the recognition
task, including RGB, optical flow, and human skeletons. Among
them, skeleton-based action recognition algorithms have attracted
many researchers to explore due to their robustness against the
variation of appearance and background. Skeleton data contain 3D
human joint coordinates and their connection matrix, representing
information about the joints’ position and the connections between
them. A typical way to use skeletons for action recognition is to
build Graph Convolutional Networks (GCNs). Since [25] proposed
STGCN to model skeletal data as a spatiotemporal graph structure,
graph convolutional networks have developed rapidly. The joints
and bones in the human body naturally form graphs, which makes
GCNs a perfect tool for extracting topological features of skeletons.
Recently, as Transformer [29] has gradually led in the performance
and efficiency of image, natural language processing, and multi-
modality, researchers have naturally begun to replace the classical
GCN structure. With efficient structures like Positional Encoding
(PE), the self-attention mechanism, and utilizing the multi-channel

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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adjacency matrix obtained by themselves, skeleton transformers
have become the dominant method[15][40][30][2].

Containing 3D coordinates, skeleton joints can be naturally
viewed as point clouds distributed in three-dimensional space as
illustrated in Fig 1. However, while dealing with skeleton joint
coordinates in skeleton data, all these methods pay much more
attention to the topological relationships that exist between the
joints, encoding joints’ position with the given time and serial num-
ber information, neglecting to model the positional information
contained in the 3D coordinates channel itself. In point cloud classifi-
cation tasks, existing methods like[4][33][39] extract critical points
and reduce point numbers by farthest point sampling and kNN
algorithm, modeling the positional relationships between points
step-by-step using 3D coordinate information, and then extract
point cloud’s latent feature with MLP or transformer layers.

To solve the above problem, we propose a skeleton-to-point net-
work (Skeleton2Point) that consists of two trunk branches. In the
first branch, referred to as the human skeleton branch, skeleton data
is encoded with given space-time information and then fed into
a graph transformer neural network to obtain predictions. In the
second branch, regarded as the point cloud branch, skeleton data is
transformed into point cloud’s form with an information transform
module. Next, FPS and kNN are used to sample and model the posi-
tion relations between the points, then a point cloud information
extractor is leveraged to extract latent features. We also propose a
Cluster-Dispatch-based interaction module to enhance the discrim-
ination of local-global information. The results from both branches
are integrated to make final predictions. By leveraging the proposed
Skeleton2Point, we effectively integrate skeleton information and
position information to achieve better human action recognition.

Our main contributions can be summarized as follows:
• To our best knowledge, we are the first to regard skeleton
joints as point clouds via incorporating the position informa-
tion of skeletons into point cloud methods, demonstrating
the validity of modeling position relationships with 3D co-
ordinates.

• We devise a novel information transformation module (ITM)
to merge the original time and series information and the
joint coordinates information. We also propose a Cluster-
Dispatch-based interaction module (CDI) to focus on overall
movement trends.

• We conduct extensive experiments on NTU-RGB+D 60 and
NTU-RGB+D 120 datasets to compare our proposed method
with the state-of-the-art models in the joint stream and
multi-streams. Experimental results demonstrate the signifi-
cant improvement of our method. In the most challenging
NTU120_XSub&XSet, our method achieves sota by a large
margin.

2 RELATEDWORKS
2.1 Skeleton Based Human Action Recognition
To tackle skeleton-based action recognition, early works treat it
as a sequence classification task. [28] design an auto-encoder with
RNNs to learn high-level features from the sequence. Another
stream converts the skeleton sequence to image-like data using
hand-crafted schemes [3, 41]. [6] concatenate an RGB frame with a

2D skeleton heat map and use 3D CNNs to extract features. These
works do not explicitly exploit the spatial structure of the human
body. Inspired by the development of Graph Convolutional Net-
works (GCN), Spatial-Temporal GCNs are used to extract high-level
features from skeletons since the joints and bones in the human
body naturally construct a graph. An early application of GCN
on skeleton-based action recognition is STGCN [25], which uses
stacked GCN blocks to process skeleton data, while each block
consists of a spatial module and a temporal module. [38] proposed
a channel-wise topology graph convolution, which models channel-
wise topology with a refinement method.

Recently, transformers have also been explored in skeleton-based
action recognition. [15] and [19]unified spatial and temporal mod-
eling within the transformer via segment temporal aggregation and
physical connectivity constraints in which way the topology of the
human body is fully exploited. [30] is proposed with comprehensive
high-performance spatiotemporal attention design and topological
information fusion. Nevertheless, due to the lack of a module focus-
ing on position information extracting, the methods above couldn’t
achieve excellent local-global positional relationship capture.

2.2 Multimodality Based Human Action
Recognition

Commonly used modalities for multimodality-based action recog-
nition include skeletons [21, 38], color images[42], text[36], human
parsing [20] and depth images[32]. For instance, Wu et al.[32] use
3D CNN to effectively fuse and complement the skeleton and depth
information for robust multimodal action recognition. Das et al.
[24] propose the Video-Pose Network (VPN), which employs both
CNN and GCN to model RGB and skeletal modalities, enabling
the learning of enhanced spatiotemporal features. Liu et al. [20]
utilize both CNN and GCN backbones to process human parsing
and human pose modalities separately, which implement a late
fusion strategy to combine features from both modalities. Shu et
al.[26] propose a novel multimodal fusion network called ESE-FN to
aggregate discriminative information of skeletons and color images
for better action recognition. These multimodal-based methods
take full advantage of the complementarity between modalities.
However, unlike the methods mentioned above which utilize two
completely different modalities, our proposed Skeleton2Point for
the first time treats the skeleton modality as point clouds, which
demonstrates the validity of modeling position relationships with
3D coordinates in skeleton-based action recognition.

2.3 Point Cloud Classification
The major method for processing the point clouds is point-based
modeling. [4] is a pioneering work that successfully applies deep
architecture on raw point sets, with shared multi-layer perceptrons
(MLP) used. PointNet++[5] is built on top of PointNet[4], which
learns hierarchical point cloud features and can aggregate features
in local geometric neighbors. Recently, PointNeXt [22] explored
more advanced training and data augmentation strategies with the
PointNet++ backbone to further improve accuracy and efficiency.
Point Transformer proposes a modified Transformer architecture
that aggregates local features with vector attention and relative
position encoding [45]. Following them, some works have extended
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Figure 2: Framework of our proposed Skeleton2Point

the point-based methods to various local aggregation operators
such as PointConT[39], achieved a sota of categorization tasks by
combining various outstanding modules in point-based modeling.
Point cloud models show excellent performance in learning 3D
coordinate information, and the joint modality of skeleton data also
consists of 3D coordinate information of each joint. So naturally,
we think of using point cloud models to deep-dive into the position
relationships of skeleton joints. However, there is no similar ex-
ploration in existing works, so we propose Skeleton2Point, which
learns the skeleton joints’ feature along with three-dimensional
position information using point cloud methods.

3 METHOD
3.1 Human Skeleton Learning
Skeleton Data. The skeleton data is concise and robust to environ-
mental noise, therefore our skeleton branch harnesses the human
skeleton for action recognition. Conceptually the skeleton sequence
is a natural topological graph, in which joints are graph vertices
and bones are edges. The graph is denoted as 𝑮 = {𝑽 , 𝑬}, where
𝑽 = {𝒗1, 𝒗2, · · · , 𝒗𝑁 } is a set of N joints and E is a set of bones in
the skeleton. For 3D skeleton data, the joint 𝒗𝑖 is denoted as 𝒙𝑖 ,
𝒚𝑖 , 𝒛𝑖 , where 𝒙𝑖 , 𝒚𝑖 , and𝒛𝑖 locate 𝒗𝑖 in three-dimensional Euclidean
space.

Here we define skeleton data as four different modalities, namely
joint (J), bone (B), joint motion (JM), and bone motion (BM). Given
two joints data 𝒗𝑖 =

{
𝒙𝑖 ,𝒚𝑖 , 𝑧𝑖

}
and 𝒗 𝑗 =

{
𝒙 𝑗 ,𝒚 𝑗 , 𝑧 𝑗

}
, a bone data of

the skeleton is defined as a vector 𝒆𝒗𝑖 ,𝒗 𝑗
=

(
𝒙𝑖 − 𝒙 𝑗 ,𝒚𝑖 −𝒚 𝑗 , 𝑧𝑖 − 𝑧 𝑗

)
.

Given two joints data vti, v(t+1)i from two consecutive frames,
the data of joint motion is defined as 𝒎𝑡𝑖 = 𝒗 (𝑡+1)𝑖 − 𝒗𝑡𝑖 i. Simi-
larly, given two bones data 𝒆𝒗 (𝑡+1)𝑖 ,𝒗 (𝑡+1) 𝑗 , 𝒆𝒗𝑡𝑖 ,𝒗𝑡 𝑗 from two con-
secutive frames, the data of bone motion is defined as 𝒎𝒗𝑡𝑖 ,𝒗𝑡 𝑗 =

𝒆𝒗 (𝑡+1)𝑖 ,𝒗 (𝑡+1) 𝑗 − 𝒆𝒗𝑡𝑖 ,𝒗𝑡 𝑗 .

Backbone. Transformer-based methods have achieved success
in skeleton-based action recognition due to their unique advantages
inmodeling joint relations. Our Skeleton2Point also embraces graph
transformer as the backbone to model skeleton features. The input
of our model is a sequence of skeletons with a shape of𝑇𝑉 3, which
means 𝑇 frames of 𝑉 joints in a 3D space. We build our approach
on [30]. The backbone consists of 10 basic graph transformers. A
graph transformer is typically composed of a spatial transformer
and a temporal transformer. The normal spatial transformer utilizes
the attention matrix 𝐴𝑡 and adjacency matrix 𝐴𝑖 for aggregate
features of neighbor vertices to update the features 𝑓𝑖 , which can
be expressed as follows:

𝑓 out𝑖 = 𝑓 in𝑖 +𝑉𝑖𝐴, (1)

𝑉𝑖 = Conv1×1
(
split𝑛

(
trans𝑣

(
𝑓 in𝑖

)))
. (2)

where 𝐴 can be defined as the attention matrix 𝐴𝑡 , static (defined
manually) adjacency matrix 𝐴𝐼 and dynamic adjacency matrix 𝐴𝑑
(initialized manually but learnable). The Eq 2 denotes the multi-
head mechanism in self-attention that our model used and the
attention matrix 𝐴𝑡 is calculated as follows:

𝑄,𝐾 = 𝜎 (linear (pool (split (𝑓 )))) , (3)
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𝐴𝑡 = softmax (atten (𝑄,𝐾)) . (4)

Our Skeleton2Point feeds the joint modality skeleton into ten dy-
namic graph transformer blocks for feature extraction. A Retro-
spect Model with Multi-stream strategy [30] is specifically used for
residual information to extract key information twice for the final
classification. The Retrospect Model adopts an adaptive pyramid
structure to pass the shallow features back to the final layer, sig-
nificantly alleviating the key information loss problem due to the
small number of joints in the network iteration process.

3.2 Point Cloud Learning
From Skeleton to Point Clouds. In the point cloud branch, we
propose the information transform module (ITM) to transform the
skeleton data into point cloud’s form. Given an input skeleton
S ∈ R3×𝑇×𝑉 , we begin by filling the channel information with
the spatial and temporal serial numbers of each joint S𝑖, 𝑗 , where
each joint’s serial number is presented as

[
𝑖
𝑇
− 0.5, 𝑗

𝑉
− 0.5

]
. The

improved skeleton is then converted to a collection of point clouds
P ∈ R5×𝑁 , where 𝑛 = 𝑇 ×𝑉 is the number of points, and each point
contains both position (coordinates) and spatial-temporal serial
information.
Point Cloud Set Feature Learning. After modality transforma-
tion, several point cloud learning levels are adopted to extract deep
position features. The point cloud learning level is made of three
key layers: Sampling layer, Grouping layer, and Point cloud extract
layer. The Sampling layer selects a set of points from input points,
which defines the centroids of local regions. The grouping layer
then constructs local region sets by finding “neighboring” points
around the centroids. The point cloud extract layer uses [39] as
lite-backbone and [33] as heavy-backbone to encode local region
patterns into feature vectors.

A point cloud learning level takes an 𝑁 × (𝑑 +𝐶) matrix as in-
put that is from N points with d-dim coordinates and C-dim point
feature. It outputs an 𝑁 ′ × (𝑑′ +𝐶) matrix of 𝑁 ′ subsampled points
with d-dim coordinates and new 𝐶′-dim feature vectors summariz-
ing local context. We introduce the layers of a point cloud learning
level in the following paragraphs.

• Sampling layer. Given input points {𝑥1, 𝑥2, . . . , 𝑥𝑛},we use
iterative farthest point sampling (FPS) to choose a subset of
points

{
𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖𝑚

}
, such that 𝑥𝑖 𝑗 is the most distant

point with
{
𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖 𝑗−1

}
regard to the rest points. Com-

pared with random sampling, it has better coverage of the
entire point set given the same number of centroids.

• Grouping layer. The input to this layer is a point set of
size 𝑁 × (𝑑 + 𝐶) and the coordinates of a set of centroids
of size 𝑁 ′ × 𝑑 . The output is groups of point sets of size
𝑁 ′ × 𝐾 × (𝑑 +𝐶), where each group corresponds to a local
region and 𝐾 is the number of points in the neighborhood
of centroid points. Note that 𝐾 varies across groups but the
succeeding Point cloud extract layer can convert a flexible
number of points into a fixed-length local region feature
vector and we set the number 𝐾 to 24.

Ball query finds all points that are within a radius of the
query point (an upper limit of 𝐾 is set in implementation).
An alternative range query is the 𝐾 nearest neighbor (kNN)
search which finds a fixed number of neighboring points.
Compared with kNN, ball query’s local neighborhood guar-
antees a fixed region scale thus making local region features
more generalizable across space, which is preferred for tasks
requiring local pattern recognition. Ablation experiments
are in Table 5. compare different sampling and grouping
strategies.

• Point cloud extract layer. In this layer, the input are 𝑁 ′

local regions of points with data size 𝑁 ′ ×𝐾 × (𝑑 +𝐶). Each
local region in the output is abstracted by its centroid and
local feature that encodes the centroid’s neighborhood. Out-
put data size is 𝑁 ′ × (𝑑 + 𝐶′). We choose PointConT[39]
as the lite building block and PointMLP[33] as the heavy
building block for local pattern extracting. By using rela-
tive coordinates together with point features we can capture
point-to-point relations in the local region. It is noted that
the detailed implementation of the block is not the main
concern of our method. The implementation of the point
cloud extract unit can be replaced by any other point cloud
network module.
In the lite block[39], there are two branches: the high-frequency
aggregation branch and the low-frequency aggregation branch.
The high-frequency branch can be defined as

𝑓ℎ = ResMLP
(
MaxPool

(
𝑓𝑔

) )
, 𝑓ℎ ∈ R (5)

where MaxPool and ResMLP denote max-pooling operation
and residual MLP block, respectively. The low-frequency
branch simply utilizes an average pooling layer (AvgPool)
before the Transformer, and this design allows the Trans-
former to focus on embedding low-frequency information.
This branch can be defined as:

𝑓𝑙 = Trans
(
AvgPool

(
𝑓𝑔

) )
, 𝑓𝑙 ∈ R (6)

In the end, we concatenate the features from the high-frequency
aggregation branch and the low-frequency aggregation branch
and then feed them to an MLP block as the Inception aggre-
gator output features 𝑓 ′.

𝑓 ′ = MLP (∥ 𝑓ℎ, 𝑓𝑙 ∥) , 𝑓 ′ ∈ R (7)

In the heavy block[39], the key operation in one stage can
be formulated as:

𝑔𝑖 = Φpos
(
A

(
Φpre

(
𝑓𝑖, 𝑗

)
, | 𝑗 = 1, · · · , 𝐾

) )
, (8)

where Φpre and Φpos are residual point MLP blocks: the
shared Φpre is designed to learn shared weights from a lo-
cal region while the Φpos is leveraged to extract deep ag-
gregated features. MLP is a small network composed of a
Fully-connected(FC) layer, Batch Normalization layer, and
activation function. In detail, the mapping function can be
written as a series of homogeneous residual MLP blocks,
𝑀𝐿𝑃 (𝑥) + 𝑥 , in which MLP is combined by FC, normaliza-
tion, and activation layers (repeated two times).



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Skeleton2Point: Recognizing Skeleton-Based Actions As Point Clouds ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

The framework of PointMLP is succinct for extracting point
clouds transformed from human skeleton joints, it exhibits
some prominent merits. 1) Since PointMLP only leverages
MLPs, it is naturally invariant to permutation, which per-
fectly fits the characteristic of point clouds. 2) By incorporat-
ing residual connections, PointMLP can be easily extended
to dozens of layers, resulting in deep feature representations.
3) In addition, since there are no sophisticated extractors
included and the main operation is only highly optimized
feed-forward MLPs, even if we introduce more layers, our
PointMLP still performs efficiently.

Cluster-Dispatch based interaction module. Inspired by the
[34], we also propose a Cluster-Dispatch-based interaction mod-
ule (CDI) to make the point cloud backbone focus on the overall
movement trends. Suppose an action sample contains𝑚 points and
the center is 𝑐 , all𝑚 points in the sample are aggregated by global
averaging to get the center point. Assuming the similarity between
the𝑚 points and the center is 𝑠 ∈ R𝑚 , we obtain 𝑝𝑣 ∈ R𝑚×𝑑 ′

by
mapping these𝑚 points to the value space, where 𝑑′ is the value
dimension. Similarly, there is a clustering center 𝑐𝑣 in the value
space and the clustering feature 𝑓 ∈ R𝑑 ′

can be written as:

𝑓 =
1
𝛾

(
𝜎

(
𝑚∑︁
𝑖=1

𝛼𝑠𝑖 + 𝛽
)
· 𝑝𝑣 + 𝑐𝑣

)
,

s.t., 𝛾 = 1 +
𝑚∑︁
𝑖=1

𝜎 (𝛼𝑠𝑖 + 𝛽) .
(9)

Here 𝛼 and 𝛽 are learnable scalars to scale and shift the similarity.
𝜎 () is a sigmoid function to re-scale the similarity to (0, 1) and
𝑠𝑖 denotes the similarity between the i-th point and the center.
To dispatch the feature, the aggregated features 𝑓 are adaptively
assigned to each point in the action sample, allowing the points to
communicate with each other and share features from all points
by:

𝑝′𝑖 = 𝑝𝑖 + FC(sig(𝛼𝑠𝑖 + 𝛽) · 𝑓 ) . (10)
In the original space, 𝑝𝑖 denotes the i-th point and 𝑝′

𝑖
denotes the

point after reallocation. Ablation experiments in Table 3. demon-
strate the effectiveness of the proposed modules.

3.3 Gaussian Search Method based Fusion
We validate the model under the joint modality only and 6-stream
fusion (6s), respectively. The joint modality only is used because
joints contain 3D coordinates same as point clouds, so we want to
verify that the deep position feature that point cloud learning had
extracted would help the skeleton backbone learn the joint position
complementarily. Following prior work [7], the input of multiple
streams refers to X̃𝑘 =

(
𝐼 − 𝑃𝑘

)
X, where 𝑘 = 1, 2, . . . , 𝐾 , and 𝐾 is

set to 2 in NTU-RGB+D 60 dataset.
In a fusion of skeleton and point clouds, fixed parameters limit

the performance of each model and make it difficult to achieve
optimal results. We follow the weight search algorithm[37] based
on Gaussian Process Bayesian Optimization. This algorithm effec-
tively finds the best solution by constructing a probabilistic model
of the objective function. Given an objective function 𝑓 (𝑥) and
initial samples P = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, where 𝑥𝑖 represents the input

Table 1: Ablation studies of point cloud branch on the NTU-
RGB+D 60 and NTU-RGB+D 120 datasets with the joint input
modality in point cloud branch.

Point ITM CDI CDI NTU-RGB+D 60 NTU-RGB+D 60
Extractor (parallel) (cascade) 60C-Sub 120C-Sub

Lite % % % 81,22 69.35
Lite ! % % 84.11 79.14
Lite ! ! % 84,62 79.67
Lite ! % ! 84.75 80.17

Table 2: Ablation studies of point cloud branch on the NTU-
RGB+D 60 dataset with the joint input modality in point
cloud branch.

Point Extractor ITM CDI NTU-RGB+D 60 X-Sub
Heavy % % 81.39
Heavy ! % 88.17
Heavy ! ! 88.56

and 𝑦𝑖 = 𝑓 (𝑥𝑖 ) represents the observed output. The goal is to find
the global optimum 𝑥 of 𝑓 (𝑥) within the search space X. The it-
eration continues until convergence, determined by a predefined
number of iterations or convergence criteria. Ablation experiments
are in Table 5. compare the different fusion results between fixed pa-
rameters and our searchmethod. Please refer to our code for details.

4 EXPERIMENTS
4.1 Datasets
NTU-RGB+D 60 is a large-scale human action recognition dataset
collected in an indoor environment, containing 56,880 skeleton ac-
tion sequences. The action samples are performed by 40 volunteers
and categorized into 60 classes. Each sample contains an action
and is guaranteed to have at most 2 subjects, which are captured
by three Microsoft Kinect v2 cameras from different views concur-
rently. The authors of this dataset recommend two benchmarks: (1)
cross-subject (Xsub): training data comes from 20 subjects, and test-
ing data comes from the other 20 subjects. (2) cross-view (X-view):
training data comes from camera views 2 and 3, and testing data
comes from camera view 1.
NTU-RGB+D 120 is currently the largest dataset with 3D joint
annotations for human action recognition, which extends the NTU-
RGB+D 60 dataset with an additional 57,367 skeleton sequences over
60 extra action classes. Totally 113,945 samples over 120 classes
were performed by 106 volunteers, captured with three camera
views. This dataset contains 32 setups, each denoting a specific
location and background. The authors of this dataset recommend
two benchmarks: (1) cross-subject (X-sub): 53 of the 106 subjects’
actions are used for training, and the remaining 53 are used for
validation. (2) cross-setup (X-setup): Of the 32 setups, data with
even setup IDs are used for training, and the remaining data with
odd IDs are used for validation.
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Table 3: Recognition accuracy comparison against state-of-the-art methods on NTU-RGB+D 60 and NTU-RGB+D 120 datasets
under the joint and multi-stream modality. Bold text denotes optimal performance, dagger marks † indicate second-best.

Type Methods Publisher NTU-RGB+D 60 Joint NTU-RGB+D 120 Joint NTU-RGB+D 60 NTU-RGB+D 120
X-Sub(%) X-View(%) X-Sub(%) X-Set(%) X-Sub(%) X-View(%) X-Sub(%) X-Set(%)

GCN

Shift-GCN[13] CVPR’20 87.80 95.10 80.90 83.20 90.70 96.50 85.90 87.60
MS-G3D[44] CVPR’20 88.77 94.88 82.35 84.14 91.50 96.20 86.90 88.40
CTR-GCN[38] ICCV’21 88.95 90.23 84.95 86.68 92.40 96.80 88.90 90.60
MSTGCN[43] AAAI’21 89.00 95.10 82.80 84.50 92.3 91.5 87.5 88.8

EfficientGCN[27] TPAMI’22 - - - - 92.10 96.10 88.70 88.90
Info-GCN[7] CVPR’22 89.80 95.20 85.10 86.30 93.00 97.10 89.80 91.20
DD-GCN[1] ICME’23 90.50 96.90 86.10 87.60 92.6 96.9 88.9 90.2
HD-GCN[12] ICCV’23 90.60 95.70 85.70 87.30 93.4† 97.2 90.1 91.6
FR-Head[9] CVPR’23 90.33 95.26 85.51 87.32 92.8 96.8 89.5 90.9

Sym-CNN[17] TPAMI’22 - - - - 90.1 96.4 - -

Hypergraph
Hyper-GNN[10] TIP’21 - - - - 89.5 95.7 - -
DHGNN[31] CoRR’21 - - - - 90.7 96.0 86.0 87.9

Selective-HCN[46] ICMR’21 - - - - 90.8 96.6 - -
SD-HGCN[11] ICONIP’21 - - - - 90.9 96.7 87.0 88.2

Transformer
HyperFormer[40] arXiv’22 90.70 95.10 86.60† 92.9 96.5 89.9 91.3

STF[15] AAAI’22 91.34† 96.46 85.06 86.40 92.47 96.86 88.85 89.92
ST&ST[2] ACMMM’23 90.90 95.40 85.80 87.90 93.1 96.7 89.8 91.2

TranSkeleton[19] TCSVT’23 - - - - 92.8 97.0 89.4 90.5

Transformer
Baseline 2023 90.73 95.76 85.82 87.64 93.20 97.20 90.20 91.50

Skeleton2Point(Lite) 2024 91.50 96.28 88.62 89.92 93.32 97.35† 90.50† 91.76†
Skeleton2Point(Heavy) 2024 92.07 96.70† 88.93 90.34 93.41 97.49 90.63 91.86

Table 4: Comparison of parameter, computation cost when
training&inferring and accuracy on the NTU-RGB+D 60 and
NTU-RGB+D 120 cross-subject Protocols.

Methods Publisher Modality Param Flops X-Sub X-Set
DRDIS[8] TCSVT’21 Ske+RGB 58.49M 18.67G 91.10 81.30
VPN[24] ECCV’20 Ske+RGB 24.00M - 93.50 86.30
MMNet[35] TPAMI’22 Ske+RGB 14.40M 19.2G 86.60 88.70
IPPNet[23] arxiv’23 Ske+RGB 25.27M 7.84G 85.00 86.70
Skeleton2Point(Lite) 2024 Ske+PC 16.98M 5.78G 93.32 90.20
Skeleton2Point(Heavy) 2024 Ske+PC 25.87M 10.27G 93.41 90.63

Table 5: Comparison of different combinations of 𝛼 and
𝛽 when ensembling skeleton learner and lite point cloud
learner[39] in joint modality.

[𝛼 , 𝛽 ] XS60(%) XV60(%) X-Sub120(%) X-Set120(%)

[0.9, 0.1] 91.09 96.03 86.57 88.33
[0.85, 0.15] 91.29 96.12 86.86 88.60
[0.8, 0.2] 91.43 96.19 87.03 88.77
[0.75, 0.25] 91.46 96.22 87.06 88.83
[0.7, 0.3] 91.31 96.18 87.09 88.81
[0.6, 0.4] 90.97 95.96 86.87 88.59
Search Method 91.50 96.28 87.14 88.91

Table 6: Comparison of different sampling and grouping
methods in NTU-RGB+D 60 under the X-Sub setting.

Sampling Grouping Acc(%)

Random sample kNN 82.43
FPS Ball(R=0.1) 80.12
FPS Ball(R=0.2) 81.94
FPS kNN 84.75

4.2 Implementation Details
We implement the proposedmethodwith the PyTorch deep learning
framework. All experiments are conducted on 8 GeForce RTX 3070
GPUs.We follow previous work [38] to process the two datasets and
all skeleton sequences are padded to 64 frames. We used Stochastic
Gradient Descent (SGD) as the optimizer and cross-entropy as
the loss function. On the skeleton branch, we adopt [30] as the
human skeleton backbone. In the first 5 epochs, we apply a warmup
strategy for stable training. The initial learning rate is set to 0.1
and we decrease it at epoch 35 and 55 with a factor of 0.1. We train
all models with 90 epochs and select the best performance with a
batch size of 128. On the point cloud branch, we adopt [39] as the
lite point cloud information extractor and [30] as the heavy point
cloud information extractor. The training epoch and learning rate
are set to 250 and 0.01 respectively, while the batch size is also set
to 128. In the skeleton branch, the base channel 𝐶 is set to 80, and
the hidden channel 𝐶ℎ is set to 320. In the point cloud branch, the
base channel𝐶 is set to 64, and the hidden channel𝐶ℎ is set to 1024.
Please refer to our code for more details.

4.3 Ablation Study
Ablation experiments of different components.We experimen-
tally validate the importance of the components in the point cloud
branch, where CDI (parallel) denotes the CDI module is paralleled
with the MLP in point cloud information extractor and CDI (cas-
cade) denotes the CDI module is cascaded with the MLP in point
cloud information extractor. Table 2 shows that the branch without
ITM has a performance drop of 2.9% and 9.8% on the NTU-RGB+D
60 dataset under the X-Sub setting and NTU-RGB+D 120 dataset
under the X-Sub setting respectively. The result drops by 0.64%
without using the CDI, which shows that the position modeling
needs to interact with global-local information and focus on over-
all movement trends. In addition, the result of using cascade CDI
outcompeting using parallel CDI by a margin of 0.3% reflects the
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Figure 3: The confusion matrix of NTU-RGB+D 60 and NTU-RGB+D 120 datasets. The more yellow squares on the diagonal,
the more accurate the recognition. (a) NTU-RGB+D 60 dataset on the benchmark of X-Sub. (b) NTU-RGB+D 60 dataset on the
benchmark of X-View. (c) NTU-RGB+D 120 dataset on the benchmark of X-Sub. (d) NTU-RGB+D 120 dataset on the benchmark
of X-Set.

cascade structure’s advantage and is more beneficial for supporting
position modeling with point cloud methods.

Parameter and computation cost. Additionally, we show-
case the parameter and computation cost required for the proposed
Skeleton2Point in Table 4. Compared with other multi-branch meth-
ods using differentmodalities like RGB, our Skeleton2Point achieves
better performance and lower cost using skeleton and point clouds,
demonstrating the validity and efficiency of modeling position
relationships with point cloud methods in skeleton-based action
recognition.

Ablation Study on the Hyper-parameters. To compare with
the weight search algorithm, we analyze the configurations on
the hyper-parameters of our method, and the results are available
in Table 5. We try many combinations of 𝛼 and 𝛽 to balance the
importance of the skeleton branch and point cloud branch sepa-
rately. From the results, we can observe that a bigger percentage of
the point cloud branch may hurt the performance while too small
values only provide a little improvement. It is concluded that the
refinement of the semantic features from the skeleton branch plays
a major role and the three-dimension position features provide the
auxiliary effects.

Ablation Study on Sampling and Grouping methods. To
validate that the sampling and grouping methods (FPS+kNN) are
suitable for the skeleton action recognition tasks, we also evaluate
different sampling methods like random sample and grouping meth-
ods like ball query on NTU-RGB+D 60 dataset under the X-Sub
setting with the joint input modality in Table 6.

4.4 Comparison with Related Methods
Our proposed Skeleton2Point method is compared with the state-
of-the-art methods on two different datasets: NTU-RGB+D 60 and
NTU-RGB+D 120 datasets with the joint inputmodality to verify the
competitive performance. Especially, only the joint stream dataset
is used for a fair comparison because joints contain 3D coordinates
the same as point clouds. If the bone or motion stream datasets
were used, point cloud methods couldn’t be well-compatible. Both
the best results of all the methods shown in Table 4 and Table 5
are reported in the original papers on the joint stream dataset. The
quantitative results are displayed in Table 3. The comparison meth-
ods include GCN-based and transformer-based methods. Popular
GCN-based methods (the upper 8 solutions in Table 3) improve
ST-GCN by constructing skeleton graphs with dynamic topologies
to increase the receptive field of graph convolution. Recently pro-
posed transformer-based methods (the last 3 solutions in Table 3)
treat each joint of the human skeleton as a token and use spatial and
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Figure 4: Visualization of the top-15 actions with the highest
change when the human skeleton branch is integrated with
the point cloud branch for NTU-RGB+D 120 dataset under
the X-Sub setting with the joint input modality.

temporal self-attention operators to capture feature dependencies.
Using a much more compact branch to model three-dimensional po-
sition relation and transformer-based network, our Skeleton2Point
achieves comparable performance with the existing methods. Espe-
cially, in the most challenging NTU-RGB+D 120 under the X-Sub
setting, Skeleton2Point has reached state-of-the-art accuracy, which
is extremely promising.

4.5 Visualization
Top-15 change analysis. To better illustrate the fusion effect of
the human skeleton branch and point cloud branch, we visualize
the top-15 actions with the highest change when the human skele-
ton branch is integrated with the point cloud branch on the most
challenging benchmark, NTU-RGB+D 120 dataset under the X-Sub
setting in Fig 4. SkeletonPoint(Ours) shows a substantial improve-
ment in accuracy over the Skeleton branch baseline for all actions
except the "reading" action. This observation proves that the in-
troduction of point cloud information as an aid is beneficial for
the model to further learn human actions. Secondly, point cloud
information performs better on actions with larger motion ampli-
tudes, where the accuracy of actions with more significant motions
such as "flick hair" and "make ok sign" improves significantly, while
the accuracy of actions with smaller motions such as "reading" de-
creases. An important reason for this change is that the point cloud
information is sampled with FPS, making it easier for the point
cloud model to capture the details of the motion and the overall
trajectory. For motions with larger motion amplitude that have
more dispersed feature points in the point cloud data, FPS covers a
wider range of motion trajectories, thus improving the accuracy for
motions with larger motion amplitude; In contrast, for actions with
smaller motion amplitude, the point cloud density is relatively low,
resulting in relatively fewer feature points sampled, which may
then be overlooked.

Confusion matrices analysis. Fig 3 shows the confusion ma-
trix of our Skeleton2Point on NTU-RGB+D 60 and NTU-RGB+D 120

Figure 5: Visualization of latent representation by t-SNE for
ambiguous groups from NTU-RGB+D 120 dataset. Differ-
ent colors indicate different classes. The upper one is from
the backbone[30], while the bottom one is from our Skele-
ton2Point.

datasets. In the confusion matrix of the NTU-RGB+D 120 dataset
under the X-Sub setting, a total of 62 samples achieved an accuracy
exceeding 95%, accounting for approximately 51.67% of the total
samples. Meanwhile, there are 98 action samples with an accuracy
exceeding 85%, accounting for approximately 81.67%. Among 120
action samples, the ’staggering’, ’jump up’, ’arm circles’, ’take off
jacket’, ’walking towards’ and ’cheers and drink’ action samples
have the highest recognition accuracy, reaching 100%, while the
’staple book’ action sample has the lowest recognition accuracy,
just reaching 44.66%.

Ambiguous groups analysis. In addition, in order to better
demonstrate the modeling ability and effectiveness of our Sidea to
ragard skeleton as point clouds on skeleton data, we randomly pick
some ambiguous groups and visualize the distribution of them in the
feature space using tSNE, which is shown in Fig 5. Each ambiguous
group contains four classes, including an anchor class and three
ambiguous classes. We compare our method with the backbone[33].
From Fig 5 we can see that our model obtains a different and more
discriminative representation resulting in a compact clustering.
We also observed that the skeleton features of the much different
categories are far apart in the feature space. Meanwhile, action
samples of different categories but with similarities are more close
in the feature space.

5 CONCLUSIONS
This paper proposes Skeleton2Point, a new representation learn-
ing framework for improved skeleton-based action recognition,
which explores the learning mechanism of joints’ position informa-
tion by regarding joints as point clouds. Different from previous
methods that neglect to model the positional information, our Skele-
ton2Point is the first to leverage point cloud methods into skeleton-
based action recognition in a dual-branch approach. The method
simultaneously demonstrates the validity of modeling position rela-
tionships with 3D coordinates in skeleton-based action recognition.
Finally, the efficacy of our Skeleton2Point is well validated by thor-
ough experiments on the NTU-RGB+D 60 and NTU-RGB+D 120
datasets, where Skeleton2Point outperformsmost existing methods.
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Discussion. Despite the performance of our proposed Skele-
ton2Point on the NTU-RGD+D datasets, how to extract temporal
information better after the skeleton is transformed into point
clouds remains to be explored. We will concentrate on it in our
future work. In addition, there are some potential negative societal
impacts to be considered, like applying our module will introduce
extra training costs, which should be thought in the carbon emission
problem.
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